

 Introduction Kubernetes

INTRODUCTION TO

KUBERNETES

KUBERNETES

INSTALLATION

DOCKER SWARM

VS KUBERNETES

WORKING OF

KUBERNETES

KUBERNETES

ARCHITECTURE

DEPLOYMENTS IN

KUBERNETES

SERVICES IN

KUBERNETES

INGRESS IN

KUBERNETES
KUBERNETES

DASHBOARD
09 08 07

06 05 04

03 02 01

Introduction to Kubernetes

Introduction to Kubernetes

Kubernetes is an open-source container orchestration software

It was originally developed by Google

It was first released on July 21st 2015

It is the ninth most active repository on GitHub in terms of
number of commits

Features of Kubernetes

Pods Service Discovery

Replication Controller Networking

Storage Management Secret Management

Resource Monitoring Rolling Updates

Health Checks

Docker Swarm vs
Kubernetes

Docker Swarm vs Kubernetes

Docker Swarm vs Kubernetes

Docker Swarm Kubernetes

Easy to Install and Initialize Complex Procedure to install Kubernetes

Faster when compared to Kubernetes Slower when compared with Docker Swarm

Not Reliable and has less features More Reliable and comparatively has more
features

Kubernetes Architecture

Kubernetes Architecture

Master Node

Slave Node Slave Node Slave Node

Kubernetes Architecture

etcd API Server Scheduler

Docker Docker Docker

Master Node

Slave Node Slave Node Slave Node

Kube-proxy Kubelet Kube-proxy Kubelet Kube-proxy Kubelet

Controller Manager

Docker

Kubernetes Architecture –
Master Components

Kubernetes Architecture – Master Components

API Server

Controller Manager

It is a highly available distributed key value store, which is used to store
cluster wide secrets. It is only accessible by Kubernetes API server, as it has

sensitive information.

Master Node

Scheduler

Controller Manager

etcd

Scheduler

API Server etcd

Docker

Kubernetes Architecture – Master Components

Controller Manager

Master Node

Scheduler

It exposes the Kubernetes API. The Kubernetes API is the front-end for
Kubernetes Control Plane, and is used to deploy and execute all

operations in Kubernetes

Controller Manager

etcd

API Server

Scheduler

API Server etcd

Docker

Kubernetes Architecture – Master Components

API Server

Master Node

The scheduler takes care of scheduling of all the processes, Dynamic Resource
Management and manages present and future events on the cluster

etcd

Controller Manager

Scheduler

Controller Manager

Scheduler API Server etcd

Docker

Kubernetes Architecture – Master Components

Controller Manager

Master Node

Scheduler

The controller manager, runs all the controllers on the Kubernetes Cluster.
Although each controller, is a separate process, but to reduce complexity,
all the controllers are compiled into a single process. They are as follows:
Node Controller, Replication Controller, Endpoints Controller, Service

Accounts and Token Controllers

Controller Manager

etcd

API Server

Scheduler

API Server etcd

Docker

Kubernetes Architecture –
Slave Components

Kubernetes Architecture – Master Components

Kubelet

Docker

Kubelet Kube-proxy

Kubelet takes the specification from the API server, and ensures the
application is running according to the specifications which were mentioned.

Each node has it’s kubelet service

Slave Node

Kube-Proxy

Kubernetes Architecture – Master Components

Kubelet

Docker

Kubelet Kube-proxy

This proxy service runs on each node and helps in making services available
to the external host. It helps in connection forwarding to the correct

resources, it is also capable of doing primitive load balancing

Slave Node

Kube-Proxy

Kubernetes Installation

Kubernetes Installation

There are numerous ways to install Kubernetes, following are some of the popular ways:

▪ Kubeadm – Bare Metal Installation

▪ Minikube – Virtualized Environment for Kubernetes

▪ Kops – Kubernetes on AWS

▪ Kubernetes on GCP – Kubernetes running on Google Cloud Platform

Hands-on: Installing
Kubernetes using kubeadm

Working of Kubernetes

Working of Kubernetes

Pod – Replica 1

Pod – Replica 2

Pod – Replica 3

Pods can have one or more containers coupled
together. They are the basic unit of Kubernetes.
To increase High Availability, we always prefer

pods to be in replicas

Working of Kubernetes

Pod – Replica 3

Pod – Replica 1

Pod – Replica 2

Service

Services are used to load balance the traffic

among the pods. It follows round robin
distribution among the healthy pods

Working of Kubernetes

Image Processing

 Service

Pod – Replica 1

Pod – Replica 2

Intellipaat.com/image

Pod – Replica 3

Intellipaat.com/video

An Ingress is an object that allows access to
your Kubernetes services from outside the

Kubernetes cluster. You configure access by creating a
collection of rules that define which inbound

connections reach which services.

 Service

Video Processing

Pod – Replica 1

Pod – Replica 2

Pod – Replica 3

Ingress

Deployments in Kubernetes

Deployments in Kubernetes

Pods

Deployment

Deployment in Kubernetes is a controller which helps your applications reach the

desired state, the desired state is defined inside the deployment file

YAML Syntax for Deployments

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:
app: nginx

spec:
replicas: 3
selector:
matchLabels:

app: nginx
template:
metadata:

labels:
app: nginx

spec:
containers:

- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

This YAML file will deploy 3 pods for nginx, and
maintain the desired state which is 3 pods, until

this deployment is deleted

Creating a Deployment

kubectl create –f nginx.yaml

Syntax

Once the file is created, to deploy this deployment use the following syntax:

List the Pods

kubectl get po

Syntax

To view the pods, type the following command:

As you can see, the number of pods are matching with the number of replicas specified in the deployment file

Creating a Service

Creating a Service

Pod – Replica 1

 Service

Pod – Replica 2

Pod – Replica 3

A Service is basically a round-robin load balancer for all the pods, which match with it’s name or selector. It
constantly monitors the pods, in case a pod gets unhealthy, the service will start deploying the traffic to the

other healthy pods.

Service Types

ClusterIP: Exposes the service on cluster-internal IP

NodePort: Exposes the service on each Node’s IP at a static port

LoadBalancer: Exposes the service externally using a cloud provider’s load balancer.

ExternalName: Maps the service to the contents of the ExternalName

Pod – Replica 1

 Service

Pod – Replica 2

Pod – Replica 3

Creating a NodePort Service

kubectl create service nodeport <name-of-service> --tcp=<port-of-service>:<port-of-container>

Syntax

We can create a NodePort service using the following syntax:

Creating a NodePort Service

kubectl get svc nginx

Syntax

To know the port, on which the service is being exposed type the following command:

Creating a NodePort Service

kubectl get svc nginx

Syntax

To know the port, on which the service is being exposed type the following command:

Creating an Ingress

What is an Ingress?

Intellipaat.com/image

Intellipaat.com/video
Service

Ingress

Service

Kubernetes ingress is a collection of routing rules that govern how external users

access services running in a Kubernetes cluster.

What is an Ingress?

Ingress Rules

Pod – Replica 1

Intellipaat.com/video

ClusterIP
Pod – Replica 2

Pod – Replica 3

NodePort

Intellipaat.com/image

ClusterIP

Pod – Replica 1

Pod – Replica 2

Pod – Replica 3

Service

Service

Ingress
Service

Ingress
Controller

Installing Ingress Controller

https://github.com/kubernetes/ingress-nginx/blob/master/docs/deploy/index.md

Link

We will be using the nginx ingress controller, for our demo. We can download it from the following link:

Define Ingress Rules

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: simple-fanout-example
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /

spec:
rules:

- http:
paths:
- path: /foo

backend:
serviceName: nginx
servicePort: 80

The following rule, will redirect traffic which asks for
/foo to nginx service. All the other requests, will be
redirected to ingress controller’s default page

Deploying Ingress Rules

kubectl create –f ingress.yaml

Syntax

To deploy the ingress rules, we use the following syntax:

Viewing Ingress Rules

kubectl get ing

Syntax

To deploy the ingress rules, we use the following syntax:

Kubernetes Dashboard

Kubernetes Dashboard

Dashboard is a web-based Kubernetes user interface. You can use Dashboard to deploy
containerized applications to a Kubernetes cluster, troubleshoot your containerized

application, and manage the cluster resources.

Installing Kubernetes Dashboard

kubectl create -f
https://raw.githubusercontent.com/kubernetes/dashboard/master/aio/deploy/recommended/kubernetes-

dashboard.yaml

Syntax

To install Kubernetes Dashboard, execute the following command:

Accessing Kubernetes Dashboard

kubectl -n kube-system edit service kubernetes-dashboard

Syntax

Change the service type for Kubernetes-Dashboard to Nodeport

Logging into Kubernetes Dashboard

1. Check the NodePort from the kubernetes-dashboard service
2. Browse to your cluster on the internet browser, and enter the IP address
3. Click on Token, it will ask you for the token entry
4. Generate a token using the following command

$ kubectl create serviceaccount cluster-admin-dashboard-sa
$ kubectl create clusterrolebinding cluster-admin-dashboard-sa \
--clusterrole=cluster-admin \
--serviceaccount=default:cluster-admin-dashboard-sa

$ TOKEN=$(kubectl describe secret $(kubectl -n kube-system get secret | awk '/^cluster-admin-dashboard-sa-
token-/{print $1}') | awk '$1=="token:"{print $2}')

$ echo $TOKEN

5. Finally, enter the token and login to your dashboard

	Introduction to Kubernetes
	Docker Swarm vs Kubernetes
	Kubernetes Architecture
	Master Node

	Kubernetes Architecture –
	Master Node
	Master Node
	Master Node

	Kubernetes Architecture –
	Slave Node
	Slave Node

	Hands-on: Installing Kubernetes using kubeadm
	Deployments in Kubernetes
	Creating a Service
	Creating an Ingress
	Ingress Rules

	Kubernetes Dashboard

