Session 2

Hadoop Distributed File System
(HDFS)

N N N N N R

What For Today

HDFS Features & Design Goals

HDFS Operation Principle

Data Locality, Rack Awareness

Writing and Reading Files

NameNode Memory Considerations
Secondary NameNode — FSImage & EditLog
Data Node — Heartbeats & Block Report

Hadoop Server Roles

Clients | J
Distributed Data Analytics Distributed Data Storage
Map Reduce HDFS
| ||,
|; | | | ' ’ ‘
Seconda
‘ Job Tracker ‘ ‘ Name Node ‘ ‘ N:rne Nn:Ive ‘ ~——masters

| Data Node & ' Data Node & | -:_---E | Data Node &
------ ~__Task Tracker > | Task Tracker - Task Tracker
& © @ — slaves

Data Node &
Task Tracker

Data Node &
- Task Tracker

Task Tracker

‘ Data Node &

HDFS Goals

Store millions of large files (GBs) totaling petabytes
Scale out with linearly as more nodes are added
JBOD instead of RAID

Optimized for large, streaming r + w, instead of low
latency access to small files. Batch > Interactive

Self-healing, recover automatically from disk/node failures
Support MapReduce processing

HDFS Background

Based on Google’s GFS paper.

Provides cheap redundant storage for massive amounts
of data.

Operates ‘on top of’ existing file systems

At ingestion data blocks are distributed across the
nodes.

Each block is typically 64Mb or 128Mb in size.
Each block is replicated 3x times by default.
Replicas are stored on different nodes.

HDFS Background (Contd)

Single Name Node stores metadata and co-ordinates
data access

Actual data is stored by Data Nodes
Files in HDFS are ‘write once’; append also available

Instead of bringing data to processors, it brings the
processing to the data

Earlier Hadoop releases had Name Node HA as SPOF

HDFS Daemons

NameNode 1 Store file system metadata, file to
block mappings, provide a global
picture ot file system

Secondary 1 Pertform WAL checkpointing tor

NameNode NN (combines Journal +
Checkpoint and rewrites a new
Checkpoint)

DataNode Many Store and retrieves block data

(tile contents)

Network Layout

— e

. World -

-, .

)Y

e e
witch I switch
Name Node Job Tracker Secondary NN Client
DN+TT DN+TT DN+TT DN+TT
DN+ TT DN+TT DN+TT DN+TT
DN+TT DN+TT DN +TT DN+TT
DN +TT DN+ TT DN+TT DN+ TT
Rack 1 Rack 2 Rack 3 Rack 4

@

@

DN +TT

DN +TT

DN+TT

DN+TT

DN +TT

DN+TT

Rack N

Data Locality

Local node Local rack Oftf rack

Rack Awareness

NameNode

metadata

file.txt =

Bk A: Y
DN:1,7,8
Blk B:

DN: 8,12, 14

Rack Awareness

DN:1,2,3,4,5
DN:6,7,8,9,10

DN:11,12, 13,14, 15

Wl’ltlng f||es tO HDFS o|< Write to

“ I want to write ~ Data Nodes
Blocks A,B,C of N 1.56
~_ File.txt -
File.txt |
- | Client o
BkA BIkB BIkC | Ty Name Node

Data Node N

Data Node 1 Data Node 5 L Data Node 6 Q Q

Blk A Blk B Blk C

* Client consults Name Node
* Client writes block directly to one Data Node
* Data Nodes replicates block
* Cycle repeats for next block

File.txt |

BlkA BlkB BlkC

Data Nodes L

Preparing HDFS writes

| want to write
File.txt
Block A

OK. Writeto
Data Nodes
1.5,6

Name Node I

| Data Node 1 ‘

Rack 1

Data Node 6

Data Node 6

Rack 5

\?ack aware
Rack 1:

Data Node 1

Rack 5:

Data Node 5
Data Node 6

* Name Node picks
two nodes in the
same rack, one
node in a different
rack

* Data protection
* Locality for M/R

File.txt .'.

I, T\
| 1
[y) |

BlkA BlkB BlkC

Data Nodes 1
& 2 pass data
along as its
received

TCP 50010

Pipelined Write

Client

/ij\

[switch |

Data 'Nnde IJ
A

o Sy

Rack 1

n w s i
et

Data Node 6 J
A

R

Rack 5

‘ Name Node ‘

\<

ack aware

Rack 1:
Data Node 1

Rack 5:
Data Node 5
Data Node 6

|
|

File.txt |

BIkA BIKB BIKC

Pipelined Write

Client

Succes

DﬂaNudelJ
-~

e

Rack 1

Succ ess

S

N,

e’

Rack 5

Block received \

‘ Name Node

File.txt
Blk A:
DN1, DN2, DN3

Rack 1:
Data Node 1

Rack 5:
Data Node 2
Data Node 3

. of Results.txt

Client reading files from HDFS

Tell me the |
block locations

BlkA=1,5,6
Blk B=8,1,2
BlkC=5,8,9

Client &
' Name Node ‘

switch /] [switch | \ metadata

| DataNodel | Data Node 5 | DataNode8 L‘ﬁ:‘ :It S0
B LA —{ s o W DN1, DNS, DN6
[Data I'I;nde 2 [~ Data Node 6 [Data Node9 | Blk B:
— - — DN7, DN1, DN2
Data Node Data Node Data Node
Data Node _ Da;:a i\tode | Data Node [B}I:; :DNB,DNB
Rack 1 Rack 5 Rack 9

ient receives Data Node list for each block
ient picks first Data Node for each block

ilent reads blocks sequentially

Re- replicating missing replicas

““UhOh!
_ :*2;?25 . metadata Rack Awareness
wleplicas "‘“i ONL: AC Rack1: DN1, DN2
: DN2: A,C Rack5: BN3,
N Rack9: DN8

Name Node

..,-r-"“
Cnnv
< blocks A,C L \ \
to Node 8 \

. Data Node 1 7@ ‘ & Data Node 8

A C ol Bl

Missing Heartbeats signify lost Nodes

Name Node consults metadata, finds affected data
Name Node consults Rack Awareness script

* Name Node tells a Data Node to re-replicate

Checkpoint and Journals

Serves filesystem metadata entirely from RAM
Rough estimate: metadata for 1000 blocks = 1GB

Checkpoint/fsimage: complete snapshot of FS metadata

Journals/edits/WAL: incremental modifications made to
metadata

HDFS Metadata :: list of Blocks + inodes (permissions, access
times, mod. Times, namespace Q, diskspace Q) + Location of
Replicas

Secondary Name Node

File system
metadata

File.txt = A,C
Name Node

A |

| I
| I
| I
I h 4

Secondary
Name Node

Its been an hour,
give me your
metadata

Not a hot standby for the Name Node
Connects to Name Node every hour*
Housekeeping, backup of Name Node metadata
Saved metadata can rebuild a failed Name Node

Secondary Name Node

reshuffle
|

merge

NameNode (fheu:kpa}ifﬁNﬂc:lE

Secondary Name Node

1) SNN instructs NN to roll its edits file and begin writing to
edits.new

2) SNN copies NN’s fsimage/checkpoint and edits/journal file to
its local checkpoint directory

3) SNN loads fsimage into RAM and replays edits on top of it.
SNN then writes a new, compacted fsimage to local disk.

4) SNN sends the new fsimage to the NN which adopts it
5) NN renames edits.new to edits

This process repeats every hour by default or when the NN’s
edits file reaches 64 MB.

File Leases

-
® - D

- Lease renewed b}r
- Write lease does not affect reads

Opening a file for write, generates 2 leases:

while open, client has exclusive access to file
if expired, another client can preempt lease

expires in 1 hour
if not closed, HDFS forcefully recovers lease

DataNode Internals

hE

010101110100
001011100011
100100101010
001010101001 [:Ej
011100011001

011000101010

010100011001 R
101011010010 - checksum (CRC)

- generation stamp

Block Replica Block Metadata

For every 512 bytes of data, 4 bytes of CRC is stored (so < 1% extra data)

DataNode HeartBeats

3
X 2 SeC (atter 10 mins

DN is dead)

Sends: total storage
capacity of DN

fraction of
storage used

of data transfers
in progress

replies

i

Reply: - command to replicate blocks to other DNs
- remove local block replicas

- reregister & sent immediate block report
- shut down DN

DataNode StartUp

namespace ID | @ l-‘b.‘

+ >
storage ID G Verify: - namespace ID
- - DN software ver.

@ Register
Verity: storage ID

@ Block Report

Sends: - block IDs

every hour - len(block replica)
- generation stamps

DataNode BlockReport

x 1 hour

%
o

Sends: - List of all blocks on

DN disks

NN stores the file -> block mappings on disk, but not the location
of blocks.

NN has to rebuild the location of blocks via the block reports every time
it restarts. NN is in safe mode until it 99% of the block locations are accounted for

Thank You

