
Session 2

Hadoop Distributed File System Hadoop Distributed File System 

(HDFS)



What For Today!!!

� HDFS Features & Design Goals

� HDFS Operation Principle

� Data Locality, Rack Awareness

� Writing and Reading Files

� NameNode Memory Considerations� NameNode Memory Considerations

� Secondary NameNode – FSImage & EditLog

� Data Node – Heartbeats & Block Report





HDFS Goals

• Store millions of large files (GBs) totaling petabytes

• Scale out with linearly as more nodes are added 

• JBOD instead of RAID 

• Optimized for large, streaming r + w, instead of low 

latency access to small files. Batch > Interactive latency access to small files. Batch > Interactive 

• Self-healing, recover automatically from disk/node failures 

• Support MapReduce processing 



HDFS Background 

• Based on Google’s GFS paper. 

• Provides cheap redundant storage for massive amounts 

of data. 

• Operates ‘on top of’ existing file systems 

• At ingestion data blocks are distributed across the • At ingestion data blocks are distributed across the 

nodes. 

• Each block is typically 64Mb or 128Mb in size. 

• Each block is replicated 3x times by default. 

• Replicas are stored on different nodes.



HDFS Background (Contd)

• Single Name Node stores metadata and co-ordinates 

data access 

• Actual data is stored by Data Nodes 

• Files in HDFS are ‘write once’; append also available 

• Instead of bringing data to processors, it brings the • Instead of bringing data to processors, it brings the 

processing to the data 

• Earlier Hadoop releases had Name Node HA as SPOF



HDFS Daemons



Network Layout



Data Locality



Rack Awareness















Checkpoint and Journals

• Serves filesystem metadata entirely from RAM

• Rough estimate: metadata for 1000 blocks = 1GB

Checkpoint/fsimage: complete snapshot of FS metadata

Journals/edits/WAL: incremental modifications made to 
metadata

• HDFS Metadata :: list of Blocks + inodes (permissions, access 
times, mod. Times, namespace Q, diskspace Q) + Location of 
Replicas





Secondary Name Node



Secondary Name Node

1) SNN instructs NN to roll its edits file and begin writing to 

edits.new

2) SNN copies NN’s fsimage/checkpoint and edits/journal file to 

its local checkpoint directory 

3) SNN loads fsimage into RAM and replays edits on top of it. 3) SNN loads fsimage into RAM and replays edits on top of it. 

SNN then writes a new, compacted fsimage to local disk. 

4) SNN sends the new fsimage to the NN which adopts it 

5) NN renames edits.new to edits 

This process repeats every hour by default or when the NN’s 

edits file reaches 64 MB. 



File Leases



DataNode Internals



DataNode HeartBeats



DataNode StartUp



DataNode BlockReport



Thank YouThank You


