Session 5

Missing Piece in Core Hadoop

* Ability to access data randomly and close to real-
time

* Not good for small files

Expectations ©

— Data stored composed of much smaller entities, system
transparently takes care of aggregating those files

— Some sort of indexing that allows user to retrieve data
with minimal number of disk seeks

— Able to work with MapReduce

Apache HBase

* Column-Oriented data store, known as “Hadoop Database”
e Supports random real-time CRUD operations (unlike HDFS)
* Distributed — designed to serve large tables

* Open-source, written in Java

* Type of “NoSQL” DB -- Does not provide a SQL based access
 Based on Google’s Big Table

* Horizontally scalable -- Automatic Shrading

* Strongly consistent reads and writes

HBase, is a sparse, distributed, persistent, multidimensional
map, which is indexed by row key, column key, and a
timestamp.

Can | Always use HBase??

Not suitable for every problem
— Compared to RDBMs has VERY simple and limited API

Good for large amounts of data
— 100s of millions or billions of rows

— If data is too small all the records will end up on a single node leaving the
rest of the cluster idle

Have to have enough hardware!!

Two well-known use cases
— Lots and lots of data (already mentioned)

— Large amount of clients/requests (usually cause a lot of data)
Great for single random selects and range scans by key

Great for variable schema
— Rows may drastically differ

— If your schema has many columns and most of them are null

Building Blocks
Table, Rows, Colums and Cells

Most basic unit is column

One or more column forms a row that is identified uniquely
by row key

A number of rows form a table and there can be many of
them

Each column may have multiple versions, with each version
stored in separate cell

All rows are always sorted lexicographically by their row-key

Row-key is always unique which can be an arbitrary array of
bytes

HBase Families

Rows are composed of columns, those in turn grouped
into column-families

All columns in a column-family are stored together in
same low level storage file called HFile.

Name of column-family must composed of printable
characters, a difference from others

Columns are often referenced as family:qualifier with
the qualifier being an arbitrary array of bytes

Storing NULL? For Hbase, simply omit the whole
column, i.e. NULLS are free of cost they do not occupy
any space

HBase: Keys and Column Families

Each record is divided into Column Families

Each row has a Key

FERSON TABLE

u-s Dt i Colvnmn Fomilies

Each column family consists of one or more Columns

HBase TimeStamps

Cells' values are versioned

— For each cell multiple versions are kept
e 3 by default

Another dimension to identify your data

Either explicitly timestamped by region server or
provided by the client

Versions are stored in decreasing timestamp order

Read the latest first — optimization to read the current
value

You can specify how many versions are kept

HBase Cells

* Can express access to data as ::

(Table, RowKey, Family, Column, Timestamp)
- Value

e Cells may exist in multiple versions, and different columns
have been written in different times = API by default
provides a coherent view, picking up the most current value
for each cell

An Example

“data:” “meta:mimetype” “meta:size”
[+ o o 1
. . o L e e e e Y e e e e L L e e e e Y o2 | I
] I 1] 1]
. “{ "name”, “lars”, . L Lo 3323" X
“row 1" PE “{ "name, lars’, t : E E Nt E E 2 E
' “f "name’, “lars”, 6 o application:json o X
: address”:...} tg Lo 8 Lo :
- - - - lom ol o o o o o - - - e o - - - - - - -
! o o !
Time
Figure 1-5. A time-oriented view into parts of a row
Row Key|Time Stamp Column “data:” Column “meta:” Column “counters:”
P . "
mimetype” “size" “updates
“row1” t3 “{"name”:"lars’, “address”: ...}" “2323" “1"
tg “{"name”:“lars’, “address”: ...}" "2
tg “application/json”
tg “{ "name”:“lars’, “address”: ...}" 3"

Figure 1-6. The same parts of the row rendered as a spreadsheet

HBase Architecture

Table is made of regions

Region — a range of rows stored together

— Single shard, used for scaling

— Dynamically split as they become too big and merged if toosmall
Region Server- serves one or more regions

— Aregion is served by only 1 Region Server

Master Server — daemon responsible for managing HBase
cluster, aka Region Servers

HBase stores its data into HDFS
— relies on HDFS's high availability and fault-tolerance features

HBase utilizes Zookeeper for distributed coordination

HBase Components

3 Zookeeper
Master |

| /hbase/region1
| /hbase/region2
\ Region —>

Sorvers /hbase/region

memstore

V

e ' HFile ” WAL ‘

Rows Distribution b/w Region Servers

[Rows
o .
Q A1 Region
s | a2 [‘ null-> A3 ‘
E Ef:f o Region
£ EL A3-> F34 ‘
S
O 1 ki " Region
< > F34-> K80
é B
[0 0390 Region
> - 'K80-> 095
g =< ~ Region
g: Z3D - 095-> null
| - z35 -~ Region Server Region Server Region Server

HBase Regions

* Region is a range of keys
— start key - stop key (ex. k3cod - odiekd)
— start key inclusive and stop key exclusive

e Addition of data
— At first there is only 1 region
— Addition of data will eventually exceed the configured maximum
— the region is split
e Default is 256 MB
— The region is split into 2 regions at the middle key
* Regions per server depend on hardware specs, with
today's hardware it's common to have:
— 10 to 1000 regions per Region Server
— Managing as much as 1GB to 2 GB per region

Auto-Shrading

Basic unit of scalability and load-balancing in Hbase is

called a region.

— Regions are essentially contiguous ranges of rows stored
together.

Regions are dynamically split by system when they
become too large

Each region is served by exactly one region-server, and
each of these servers can serve many regions at a time

Regions allow for fast-recovery when a server fails,
and load balancing since they can be moved between
Servers

HBase Data Storage

Data is stored in files called HFiles/StoreFiles
— Usually saved in HDFS

HFile is basically a key-value map
— Keys are sorted lexicographically
When data is added it's written to a log called Write

Ahead Log (WAL) and is also stored in memory
(memstore)

Flush: when in-memory data exceeds maximum value
it is flushed to an HFile
— Data persisted to HFile can then be removed from WAL

— Region Server continues serving read-writes during the
flush operations, writing values to the WAL and memstore

HBase Data Storage

Recall that HDFS doesn't support updates to an existing
file therefore HFiles are immutable

— Cannot remove key-values out of HFile(s)
— Over time more and more HFiles are created

Delete marker is saved to indicate that a record was
removed

— These markers are used to filter the data - to “hide” the
deleted records

— At runtime, data is merged between the content of the
HFile and WAL

Also supports Predicate Deletions
— Allowing u to keep, for ex, only values written in past week

HBase Data Storage

(l;& m:g:m ST Cient) @n rn*rrrl s R Gient)

—- -_.F._----_--.---_----_----. .---------------------:{
_[MI00) (00 (O00) [O30) (00
50| B) B

DataNode DataNode DataNode DataNode DataNode

Hbase basically handles two types of file types: one is used
for WAL and other for actual data storage.

HFile Insight

* Internally, HFiles are sequences of blocks with block
index stored at end of file
— Default Block size is 64 KB but configurable

e Since, every Hfile has a block index, lookups can be
performed with a single disk seek.

* First, the block possibly containing the given key is
determined by doing a binary search in the in-
memory block index, followed by a block read from
disk to find the actual key.

Compaction

To control the number of HFiles and to keep cluster

well balanced HBase periodically performs data
compactions

Minor Compaction:

— Smaller HFiles are merged into larger HFiles (n-way merge)
— Fast - Data is already sorted within files
— Delete markers are not applied

Major Compaction:

— For each region merges all the files within a column-family
into a single file

— Scan all the entries and apply all the deletes as necessary

HBase Master

* Responsible for managing regions and their locations
— Assigns regions to region servers
— Re-balanced to accommodate workloads
— Recovers if a region server becomes unavailable
— Uses Zookeeper — distributed coordination service

 Doesn't actually store or read data
— Clients communicate directly with Region Servers
— Usually lightly loaded

 Responsible for schema management and changes
— Adding/Removing tables and column families

HBase and Zookeeper

* Each Region Server creates an ephemeral node

— Master monitors these nodes to discover available region
servers

— Master also tracks these nodes for server failures

* Uses Zookeeper to make sure that only 1 master is
registered

 HBase cannot exist without Zookeeper

HBase Write Path

Client issues a Put request to HRegionServer, which hands the
details to matching HRegion instance

First step is to write data to Write-Ahead-Log (WAL)
Once data is written to WAL, it is placed in memstore

At same time, it is checked to see if memstore is full and, if so,
a flush to disk is requested

Cliant Region Server VWAL memstore il

I Put/Delete .| | |

| | Write to WAL
e

| _Write to memstore |

v | - I |

—
g

Flush to disk "l

HBase Write Path

HBase Read path

Reading data back involves a merge of what is stored in the
memstores, that is, the data that has not been written to disk,
and the on-disk store files.

Communication Flow to Access a Row:

— New client contacts the Zookeeper ensemble to retrieve
the servername that hosts the -ROOT- region

— It then query that region server to get server name that
hosts .META. Table region containing the required row

— Both of these information is cached and lookup only once

— Lastly, it query the reported .META. server to retrieve the
server name that has the region containing the row key
the client is looking for

HBase Read Path Contd...

— Client caches this information as well and then contacts
HRegionServer hosting that region directly

— Overtime client has pretty complete picture of where to
get rows without needing to query .META. server again.

* Note that the WAL is never used during data retrieval, but
solely for recovery purposes when a server has crashed
before writing the in-memory data to disk.

HBase Lab Session

Planned Contents —

v’ Start the HBase server and launch the HBase shell
v’ Create a table and populate it with data

v’ Learn how to check the health of HBase

v" View the HBase web GUI

v" Track down the HBase files in HDFS

Thank You

