
Session 5

Missing Piece in Core Hadoop

• Ability to access data randomly and close to real-

time

• Not good for small files

Expectations ☺☺☺☺

– Data stored composed of much smaller entities, system

transparently takes care of aggregating those files

– Some sort of indexing that allows user to retrieve data

with minimal number of disk seeks

– Able to work with MapReduce

Apache HBase

• Column-Oriented data store, known as “Hadoop Database”

• Supports random real-time CRUD operations (unlike HDFS)

• Distributed – designed to serve large tables

• Open-source, written in Java

• Type of “NoSQL” DB -- Does not provide a SQL based access• Type of “NoSQL” DB -- Does not provide a SQL based access

• Based on Google’s Big Table

• Horizontally scalable -- Automatic Shrading

• Strongly consistent reads and writes

HBase, is a sparse, distributed, persistent, multidimensional
map, which is indexed by row key, column key, and a
timestamp.

Can I Always use HBase??

• Not suitable for every problem
– Compared to RDBMs has VERY simple and limited API

• Good for large amounts of data
– 100s of millions or billions of rows

– If data is too small all the records will end up on a single node leaving the
rest of the cluster idle

• Have to have enough hardware!!• Have to have enough hardware!!

• Two well-known use cases
– Lots and lots of data (already mentioned)

– Large amount of clients/requests (usually cause a lot of data)

• Great for single random selects and range scans by key

• Great for variable schema
– Rows may drastically differ

– If your schema has many columns and most of them are null

Building Blocks
Table, Rows, Colums and Cells

• Most basic unit is column

• One or more column forms a row that is identified uniquely

by row key

• A number of rows form a table and there can be many of

themthem

• Each column may have multiple versions, with each version

stored in separate cell

• All rows are always sorted lexicographically by their row-key

• Row-key is always unique which can be an arbitrary array of

bytes

HBase Families

• Rows are composed of columns, those in turn grouped
into column-families

• All columns in a column-family are stored together in
same low level storage file called HFile.

• Name of column-family must composed of printable • Name of column-family must composed of printable
characters, a difference from others

• Columns are often referenced as family:qualifier with
the qualifier being an arbitrary array of bytes

• Storing NULL? For Hbase, simply omit the whole
column, i.e. NULLS are free of cost they do not occupy
any space

HBase: Keys and Column Families

HBase TimeStamps

• Cells' values are versioned

– For each cell multiple versions are kept

• 3 by default

• Another dimension to identify your data

• Either explicitly timestamped by region server or • Either explicitly timestamped by region server or
provided by the client

• Versions are stored in decreasing timestamp order

• Read the latest first – optimization to read the current
value

• You can specify how many versions are kept

HBase Cells

• Can express access to data as ::

(Table, RowKey, Family, Column, Timestamp)

���� Value

• Cells may exist in multiple versions, and different columns

have been written in different times � API by default

provides a coherent view, picking up the most current value

for each cell

An Example

HBase Architecture

• Table is made of regions

• Region – a range of rows stored together
– Single shard, used for scaling

– Dynamically split as they become too big and merged if toosmall

• Region Server- serves one or more regions
– A region is served by only 1 Region Server– A region is served by only 1 Region Server

• Master Server – daemon responsible for managing HBase
cluster, aka Region Servers

• HBase stores its data into HDFS
– relies on HDFS's high availability and fault-tolerance features

• HBase utilizes Zookeeper for distributed coordination

HBase Components

Rows Distribution b/w Region Servers

HBase Regions

• Region is a range of keys
– start key → stop key (ex. k3cod → odiekd)

– start key inclusive and stop key exclusive

• Addition of data
– At first there is only 1 region

– Addition of data will eventually exceed the configured maximum– Addition of data will eventually exceed the configured maximum

→ the region is split
• Default is 256MB

– The region is split into 2 regions at the middle key

• Regions per server depend on hardware specs, with
today's hardware it's common to have:
– 10 to 1000 regions per Region Server

– Managing as much as 1GB to 2 GB per region

Auto-Shrading

• Basic unit of scalability and load-balancing in Hbase is
called a region.

– Regions are essentially contiguous ranges of rows stored
together.

• Regions are dynamically split by system when they • Regions are dynamically split by system when they
become too large

• Each region is served by exactly one region-server, and
each of these servers can serve many regions at a time

• Regions allow for fast-recovery when a server fails,
and load balancing since they can be moved between
servers

HBase Data Storage

• Data is stored in files called HFiles/StoreFiles
– Usually saved in HDFS

• HFile is basically a key-value map
– Keys are sorted lexicographically

• When data is added it's written to a log called Write • When data is added it's written to a log called Write
Ahead Log (WAL) and is also stored in memory
(memstore)

• Flush: when in-memory data exceeds maximum value
it is flushed to an HFile
– Data persisted to HFile can then be removed from WAL

– Region Server continues serving read-writes during the
flush operations, writing values to the WAL and memstore

HBase Data Storage

• Recall that HDFS doesn't support updates to an existing
file therefore HFiles are immutable
– Cannot remove key-values out of HFile(s)

– Over time more and more HFiles are created

• Delete marker is saved to indicate that a record was
removed

• Delete marker is saved to indicate that a record was
removed
– These markers are used to filter the data - to “hide” the

deleted records

– At runtime, data is merged between the content of the
HFile and WAL

• Also supports Predicate Deletions
– Allowing u to keep, for ex, only values written in past week

HBase Data Storage

Hbase basically handles two types of file types: one is used

for WAL and other for actual data storage.

HFile Insight

• Internally, HFiles are sequences of blocks with block

index stored at end of file

– Default Block size is 64 KB but configurable

• Since, every Hfile has a block index, lookups can be • Since, every Hfile has a block index, lookups can be

performed with a single disk seek.

• First, the block possibly containing the given key is

determined by doing a binary search in the in-

memory block index, followed by a block read from

disk to find the actual key.

Compaction

• To control the number of HFiles and to keep cluster
well balanced HBase periodically performs data
compactions

• Minor Compaction: • Minor Compaction:
– Smaller HFiles are merged into larger HFiles (n-way merge)

– Fast - Data is already sorted within files

– Delete markers are not applied

• Major Compaction:
– For each region merges all the files within a column-family

into a single file

– Scan all the entries and apply all the deletes as necessary

HBase Master

• Responsible for managing regions and their locations

– Assigns regions to region servers

– Re-balanced to accommodate workloads

– Recovers if a region server becomes unavailable

– Uses Zookeeper – distributed coordination service– Uses Zookeeper – distributed coordination service

• Doesn't actually store or read data

– Clients communicate directly with Region Servers

– Usually lightly loaded

• Responsible for schema management and changes

– Adding/Removing tables and column families

HBase and Zookeeper

• Each Region Server creates an ephemeral node

– Master monitors these nodes to discover available region

servers

– Master also tracks these nodes for server failures

• Uses Zookeeper to make sure that only 1 master is • Uses Zookeeper to make sure that only 1 master is

registered

• HBase cannot exist without Zookeeper

HBase Write Path

• Client issues a Put request to HRegionServer, which hands the

details to matching HRegion instance

• First step is to write data to Write-Ahead-Log (WAL)

• Once data is written to WAL, it is placed in memstore

• At same time, it is checked to see if memstore is full and, if so, • At same time, it is checked to see if memstore is full and, if so,

a flush to disk is requested

HBase Read path

• Reading data back involves a merge of what is stored in the
memstores, that is, the data that has not been written to disk,
and the on-disk store files.

• Communication Flow to Access a Row:

– New client contacts the Zookeeper ensemble to retrieve – New client contacts the Zookeeper ensemble to retrieve
the servername that hosts the -ROOT- region

– It then query that region server to get server name that
hosts .META. Table region containing the required row

– Both of these information is cached and lookup only once

– Lastly, it query the reported .META. server to retrieve the
server name that has the region containing the row key
the client is looking for

HBase Read Path Contd…

– Client caches this information as well and then contacts

HRegionServer hosting that region directly

– Overtime client has pretty complete picture of where to

get rows without needing to query .META. server again.

• Note that the WAL is never used during data retrieval, but

solely for recovery purposes when a server has crashed

before writing the in-memory data to disk.

HBase Lab Session

Planned Contents –

� Start the HBase server and launch the HBase shell

� Create a table and populate it with data

� Learn how to check the health of HBase

� View the HBase web GUI

� Track down the HBase files in HDFS

Thank YouThank You

