Session 9

Motivation

= Limitation of MR
= Have to use M/R model
= Java knowledge required (streaming ??)
= Not Reusable
= Error prone

= For complex jobs:
= Multiple stage of Map/Reduce functions

= Just like ask dev to write specify physical execution plan
in the database

Overview

® A data warehouse infrastructure built on top of Hadoop for
providing data summarization, query, and analysis.

— ETL.
— Structure.
— Access to different storage.
— Query execution via MapReduce.
® Key Building Principles:
— SQL is a familiar language
— Extensibility — Types, Functions, Formats, Scripts
— Performance

e Early Hive development work started at Facebook in 2007
 Today Hive is an Apache project under Hadoop

Transformation

e Translates HiveQL statements into a set of
MapReduce Jobs which are then executed on a

Hadoop Cluster

(\ (

STORED A% TEXTFILE;

TH
“dataluzsr-posts. td'
\ OVERWRITE INTO TABLE puatfy \

Hive

\

) ~

Client Machine

Execute on
Hadoop Cluster

>

<€

Monitor/Report

Hadoo

S

P

Cluster

What NOT?

 Hive does NOT provide low latency or realtime
gueries

 Even querying small amounts of data may take
minutes

* Designed for scalability and ease-of-use rather
than low latency responses

Hive “One Shot” Commands

CLI accepts a -e command in which CLI exits immediately as soon queries
are executed
$ hive -e "SELECT * FROM mytable LIMIT 3";

Adding the -S for silent mode removes the OK and Time taken ... lines, as
well as other inessential output,

S hive -S -e "select * FROM mytable LIMIT 3" > /tmp/myquery = can move the output to
file

Hive can execute one or more queries that were saved to a file using the -f
file argument. By convention, saved Hive query files use the .q or .hql
extension.

S hive -f /path/to/file/withqueries.hql

If you are already inside the Hive shell you can use the SOURCE command
to execute a script file.
hive> source /path/to/file/withqueries.hql;

-i file option, which lets you specify a file of commands for the CLI to
run as it starts, before showing you the prompt.

.hiverc file

* Hive automatically looks for a file named .hiverc in your
HOMIE directory and runs the commands it contains, if any.

— Can be used to set user-specific properties =2 IMP

 These files are convenient for commands that you run
frequently, such as setting system properties or adding Java
archives (JAR files) of custom Hive extensions to Hadoop’s
distributed cache.

— Use semicolon at the end of each line**

e Shell Execution:: You don’t need to leave the hive CLI to run
simple bash shell commands. Simply type ! followed by the
command and terminate the line with a semicolon (;)

Text File En

coding of Data Values

Hive uses various control characters by default, which are less likely to

appear in value strings.

Delimiter

\n

AA (“control” A)

"B

~C

Al format defaults

Description
For text files, each line is a record, so the line feed character separates records.

Separates all fields (columns). Written using the octal code \001 when explicitly
specified in CREATE TABLE statements.

Separate the elements in an ARRAY or STRUCT, or the key-value pairs in a MAP.
Written using the octal code \002 when explicitly specified in CREATE TABLE
statements.

Separate the key from the corresponding value in MAP key-value pairs. Written using
the octal code \ 003 when explicitly specified in CREATE TABLE statements.

ROW FORMAT DELIMITED

FIELDS TERMINATED

BY "\001'

COLLECTION ITEMS TERMINATED BY "\002'
MAP KEYS TERMINATED BY "\003'
LINES TERMINATED BY '\n'

STORED AS TEXTFILE;

Schema on Read

When you write data to a traditional database, the database has
total control over the storage. An important implication of this
control is that the database can enforce the schema as data is
written. This is called schema on write.

Hive has no such control over the underlying storage. There are
many ways to create, modify, and even damage the data that Hive
will query. Therefore, Hive can only enforce queries on read. This is
called schema on read.

So what if the schema doesn’t match the file contents? Hive does
the best that it can to read the data else it will replace the NULL
where doesn’t matches (i.e. during schema violation)

Customizing Table Storage Formats

IMP = Hive uses,
e aninput format to split input streams into records,

e an output format to format records into output streams (i.e., the
output of queries),

e and a SerDe to parse records into columns, when reading, AND
e encodes columns into records, when writing.

Example— Using a custom SerDe, i/p and o/p format:
CREATE TABLE kst
PARTITIONED BY (ds string)
ROW FORMAT SERDE 'com.linkedin.haivvreo.AvroSerDe'
WITH SERDEPROPERTIES ('schema.url'="http://schema_provider/kst.avsc')
STORED AS
INPUTFORMAT ‘com.linkedin.haivvreo.AvroContainerlnputFormat'
OUTPUTFORMAT 'com.linkedin.haivvreo.AvroContainerOutputFormat’;

Hive MetaStore

e To support features like schema(s) and data
partitioning Hive keeps its metadata in a Relational
Database

— Packaged with Derby, a lightweight embedded SQL DB

e Default Derby based is good for evaluation an testing

e Schema is not shared between users as each user has their
own instance of embedded Derby

e Stored in metastore_db directory which resides in the
directory that hive was started from
* Can easily switch another SQL installation such as
MySQL

MetaStore Configurations

Embedded Hive Service JYM
metastore

Driver faee-s p| Metastoe

Local Hive Service JYM
metastore
Driver }aeees p| Metastor i
Hive Service JYM
Driver }eeees > Metastore |- e
Remote Hive Service IVM
metastore
r Metastore
Driver e ; Metastore |
Hive Service JYM _"_.-'*"-‘. ‘
e - -"‘ e
Driver [imeeseemcesesen camend > gmﬁ ________

Hive Installation

 Set SHADOOP_HOME environment variable
— Was done as a part of HDFS installation

e Set SHIVE_HOME and add hive to the PATH

 Hive will store its tables on HDFS and those locations
needs to be bootstrapped
export HIVE_HOME=SCDH_HOME/hive-0.8.1-cdh4.0.0

export PATH=SPATH:SHIVE_ HOME/bin
S hdfs dfs -mkdir /tmp
S hdfs dfs -mkdir /user/hive/warehouse
S hdfs dfs -chmod g+w /tmp
S hdfs dfs -chmod g+w /user/hive/warehouse

e Similar to other Hadoop’s projects Hive’s
configuration is in SHIVE_HOME/conf/hivesite.xml

Type System

* Primitive types
— Integers:TINYINT, SMALLINT, INT, BIGINT.
— Boolean: BooLEAN.
— Floating point numbers: FLOAT, DOUBLE .
— String: STRING.

 Complex types
— Structs: {aINT; b INT}.
— I\/Iaps: M['group'].
— Arrays: ['a', 'b’, 'c'], A[1] returns 'b’.

Built In Functions

Mathematical: round, floor, ceil, rand, exp...

Collection: size, map_keys, map_values,
array_contains.

Type Conversion: cast.
Date: from_unixtime, to_date, year, datediff...
Conditional: if, case, coalesce.

String: length, reverse, upper, trim...

Serialization/DeSerialization

= Ser/De

= Describe how to load the data from the file into a
representation that make it looks like a table;

= Lazy load (Default — LazySerDe)
= Create the field object when necessary
= Reduce the overhead to create unnecessary objects in Hive
= Java is expensive to create objects
= Increase performance

Hive File Format

* Hive lets users store different file formats
 Helps in performance improvements
e Default — TEXTFILE FORMAT

e SQL Example:
CREATE TABLE dest1(key INT, value STRING)
STORED AS
INPUTFORMAT
'org.apache.hadoop.mapred.SequenceFilelnputFormat'
OUTPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileOutputFormat’

= w e

Simple Example

Create a Table

Load Data into a Table
Query Data

Drop the Table

1. Create a Table

Launch Hive Command Line Interface (CLI)

$ cd $PLAY AREA | | _
Location of the session’s log file

$ hive -
Hive history file=/tmp/hadoop/hive job log hadoop 201208022144 2014345460.txt

. | _ .
hive> !cat data/user-posts.txt; Can execute local commands

userl, Funny Story,1343182026191 within CLI. place a command
user?2,Cool Deal, 1343182133839 _ " .

userd, Interesting Post, 1343182154633 Inbetween:and;
userb,Yet Another Blog, 13431839394

hive>
Values are separate by ‘," and each row

represents a record; first value is user
name, second is post content and third

is timestamp

1. Create a Table

hive> CREATE TABLE posts (user STRING, post STRING, time BIGINT)
> ROW FORMAT DELIMITED

» FIELDS TERMINATED BY ','. 15t line: creates a table with 3 columns
> STORED AS TEXTFILE:. 2" and 3" line: how the underlying file
OK should be parsed
Time taken: 10.606 seconds 4™ line: how to store data

. Statements must end with a semicolon
and can span multiple rows

;;—ve} show tables;. Display all of the tables

posts
Time taken: 0.221 seconds

Result is displayed between OK
and Time taken..’

hive> describe posts;.

OK

user string Display schema for posts table
post string

time bigint

Time taken: 0.212 seconds

2. Load Data Into a Table

hive> LOAD DATA LOCAL INPATH 'data/user-posts.txt'
> OVERWRITE INTO TABLE posts;
Copying data from file:/home/hadoop/Training/play_area/data/user-posts.txt
Copying file: file:’lhome/hadoop/Training/play_ areafdatafuser—posts txt
Loading data to table default.posts
Deleted /user/hive/warehouse/posts
OK
Time taken: 5.818 seconds
hive>

Existing records the table posts are deleted; data in
user-posts.txt is loaded into Hive’'s posts table

5 hdfs dfs -cat fuserfhivejwarehausefpastsfuser—posts.txt

userl, Funny Story,1343182026191

user?2,Cool Deal,1343182133839

userd, Interesting Post, 1343182154633

userbh,Yet Another Blo d, 13431839394 Under the covers Hive stores it's
tables in /user/hive/warehouse
(unless configured differently)

3. Query Data

hive> select count (1) from posts; < Count number of records in posts table
Total MapReduce jobs =1<—_
Launching Job 1 out of 1 ~ Transformed HiveQL into 1 MapReduce Job

Starting Job = job_1343957512459_0004, Tracking URL =
http://localhost:8088/proxy/application_1343957512459 0004/
Kill Command = hadoop job -Dmapred.job.tracker=localhost: 10040 -kill
job_1343957512459 0004
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2012-08-02 22:37:24,962 Stage-1 map = 0%, reduce = 0%
2012-08-02 22:37:30,497 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec
2012-08-02 22:37:31,577 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.87 sec
2012-08-02 22:37:32,664 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.64 sec
MapReduce Total cumulative CPU time: 2 seconds 640 msec
Ended Job = job_1343957512459_0004
MapReduce Jobs Launched:
Job 0: Map: 1 Reduce: 1 Accumulative CPU: 2.64 sec HDFS Read: 0 HDFS Write: O
SUCESS
Total MapReduce CPU Time Spent: 2 seconds 640 msec
OK
4 < Result is 4 records

| Time taken: 14.204 seconds

3. Query Data

hive> select * from posts where user="user2";

DE{ Select records for "user2"

user” Cool Deal 1343182133639
Time taken: 12.184 seconds

Select records whose
timestamp is less or equals
to the provided value

hive> select * from posts where timé<=1343182133839 limit 2;

OK Usually there are too
userl Funny Story 134318202¢191 many results to display,
user?2 Cool Deal 1343182133839 then one could utilize
Time taken: 12.003 seconds limit command to

lhive:} bound the display

4. Drop The Table

hive> DROP TABLE posts; Remove the table; use with caution
OK

Time taken: 2.182 seconds

hive> exit;

L

hdfs dfs -1s /user/hive/warehouse/

-

If hive was managing underlying file then it
will be removed

Loading Data

- Several options to start using data in HIVE
— Load data from HDEFS location

hive> LOAD DATA INPATH '/training/hive/user-posts.txt’
> OVERWRITE INTO TABLE posts;

» File is copied from the provided location to /user/hive/warehouse/
(or configured location)

— Load data from a local file system

hive> LOAD DATA LOCAL INPATH 'data/user-posts.txt’
> OVERWRITE INTO TABLE posts;

» File is copied from the provided location to /user/hive/warehouse/
(or configured location)

— Utilize an existing lo‘catinn on HDFS
» Just point to an existing location when creating a table

External Table

hive> CREATE EXTERNAL TARLE posts
> (user STRING, post STRING, time BIGINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION '/training/hive/';

VONONOW

OK

Time taken: 0.077 seconds

hive> Hive will load all the files under
/training/hive directory in posts table

Partitions

To increase performance Hive has the capability to
partition data

— The values of partitioned column divide a table into
segments

— Entire partitions can be ignored at query time

— Similar to relational databases’ indexes but not as
granular

Partitions have to be properly created by users
— When inserting data must specify a partition

At query time, whenever appropriate, Hive will
automatically filter out partitions

Creating Partitioned Tables

hive> CREATE TABLE posts (user STRING, post STRING, time BIGINT)
> PARTITIONED BY (country STRING) .

> ROW FORMAT DELIMITED "
> FIELDS TERMINATED BY ', Partition table based on
> STORED AS TEXTFILE; the value of a country.

QK
Time taken: 0.116 seconds

hive> describe posts;

OK
user string There is no difference in schema
post string - between "partition” columns and
time bigint "data" columns

countrystring
Time taken: 0.111 seconds

hive> show partitions posts;

OK

Time taken: 0.102 seconds
khive>

Load Data Into Partitioned Table

hive> LOAD DATA LOCAL INPATH 'data/user-posts-US.txt'

> OVERWRITE INTO TABLE posts;
FATLED: Error in semantic analysis: Need to specify partition
columns because the destination table is partitioned

Since the posts table was defined to be partitioned
any insert statement must specify the partition

hive> LOAD DATA LOCAL INPATH 'data/user-posts-US.txt'

> OVERWRITE INTO TABLE posts PARTITION (country='US') ;
OK
Time taken: 0.

hive> LOAD DATA LOCAL INPATH 'data/user-posts-AUSTRALIA.txt'
> OVERWRITE INTO TABLE posts PARTITION (country='AUSTRALIA') ;
OK '
Time taken: 0.236 seconds o _ .
hive> Each file is loaded into separate partition;
data is separated by country

Partitioned Table

- Partitions are physically stored under
separate directories

hive> show partitions posts;

OK

country=AUSTRALIA There is a directory for
country=US each partition value
Time taken: 0.095 seconds

hive> exit;

$ hdfs dfs -Is -R /user/hive/warehouse/posts

/user/hive/warehouse/posts/country=AUSTRALIA
/user/hive/warehouse/posts/country=AUSTRALIA/user-posts-AUSTRALIA.txt

/user/hive/warehouse/posts/country=US
/user/hive/warehouse/posts/country=US/user-posts-US.txt

Querying Partitioned Table

* There is no difference in syntax

 When partitioned column is specified in the
where clause entire directories/partitions could
be ignored

Only "COUNTRY=US" partition will be queried,
"COUNTRY=AUSTRALIA" partition will be ignored

hive> select * from posts where country=‘US' limit 10;
OK

userl Funny Story 1343182026191 us
user?2 Cool Deal 1343182133839 Us
user?2 Great Interesting Note 13431821339485 Uus
userd Interesting Post 1343182154633 us
userl Humor is good 1343182039586 Us
Us

user?2 Hi1i I am user #2 1343182133839
Time taken: 0.197 seconds

Bucketing

e Mechanism to query and examine random samples of

data
— Break data into a set of buckets based on a hash function of a
"bucket column"
» Capability to execute queries on a sub-set of random data
 Doesn’t automatically enforce bucketing
— User is required to specify the number of buckets by setting # of

reducer
hive> mapred.reduce.tasks = 2b6; Either manually set the # of
OR | reducers to be the number of
buckets or you can use

hive> hive.enforce.bucketing = true; 7. ., .
] ‘hive.enforce.bucketing’ which
will set it on your behalf

Create and Use Table with Buckets

hive> CREATE TABLE post count (user STRING, count INT)

> CLUSTERED BY (user) INTO 5 BUCKETS;. Declare table with 5

OK
buckets for user column

Time taken: 0.076 seconds

hive> set hive.enforce.bucketing = true; - #cﬁreducermﬂlgetsetS
hive> insert overwrite table post count
> select user, count(post) from posts group by user;

Total MapReduce jobs = Z
Launching Job 1 out of 2 ,

Insert data into post_count bucketed
Launching Job 2 out of 2 table; number of posts are counted up

.. for each user

OK

Time taken: 42.304 seconds

hive> exit;

5 hdfs dfs -1s -R /user/hive/warehouse/post_count/
/user/hive/warehouse/post count/000000 0
/user/hive/warehouse/post count/000001 O .
/user/hive/warehouse/post count/000002 0
/user/hive/warehouse/post count/000003
/user/hive/warehouse/post count/000004

Afile per bucket is
) created; now only a
N sub-set of buckets can

ot

N be sampled

ot

Random Sample of Bucketed Table

hive> select * from post count TABLESAMPLE (BUCKET 1 OUT OF 2):
OK '

userb

userl 2
Time taken: 11.758 seconds
hive>

Sample approximately 1 for every 2 buckets

Joins

Joins in Hive are trivial
Supports outer joins

— left, right and full joins
Can join multiple tables
Default Join is Inner Join

— Rows are joined where the keys match

— Rows that do not have matches are not included in the
result

|

Simple Inner Join

+ Let’s say we have 2 tables: posts and likes

hive> select * from posts limit 10;

OK
user1? Funny Story
user2 Cool Deal

Time taken: 0.108 seconds
hive> select * from likes limit 10;
OK

usert 12 1343182026191
user2z 7 1343182139394
user3 0 1343182154633
userd 30 1343182147364

Time taken: 0.103 seconds

1343182026191
1343182133839
user4d Interesting Post 1343182154633
userd5 Yet Another Blog 1343183939434

We want to join these 2 data-sets
and produce a single table that
contains user, post and count of
likes

hive> CREATE TABLE posts_likes (user STRING, post STRING, likes_count INT);

OK
Time taken: 0.06 seconds

Simple Inner Join

hive> INSERT OVERWRITE TABLE posts likes

> SELECT p.user, p.post, l.count

> FROM posts p JOIN likes 1 ON (p.user = l.user);
OK '
Time taken: 17.901 seconds

Two tables are joined based on user
column; 3 columns are selected and
stored in posts_likes table

hive> select * from posts likes limit 10;

OK

userl Funny Story 1

user2 Cool Deal 7
S

[2

userd4d Interesting Post 0
Time taken: 0.082 second

hive>

Outer Join

* Rows which will not join with the ‘other’ table are still
included in the result

Left Outer

— Row from the first table are included whether they
have a match or not. Columns from the unmatched
(second) table are set to null.

Right Outer

— The opposite of Left Outer Join: Rows from the second
table are included no matter what. Columns from the
unmatched (first) table are set to null.

Full Outer

' ; — Rows from both sides are imncluded. For unmatched
rows the columns from the ‘other’ table are set to null.

Outer Join Examples

SELECT p.*, 1.%
FROM posts p LEFT OUTER JOIN likes 1 ON (p.user = l.user)
limit 10;

SELECT p.*, 1.%
FROM posts p RIGHT OUTER JOIN likes 1 ON (p.user = l.user)
limit 10;

SELECT p.*, 1.%
FROM posts p FULL OUTER JOIN likes 1 ON (p.user = l.user)
limit 10;

Pros & Cons

= Pros
= A easy way to process large scale data
= Support SQL-based queries
= Provide more user defined interfaces to extend
= Programmability
= Interoperability with other database tools

= Cons
= No easy way to append data
= Files in HDFS are immutable
= Accepts only a subset of SQL queries

Application

= Log processing

= Daily Report

= User Activity Measurement
= Data/Text mining

= Machine learning (Training Data)
= Business intelligence

= Advertising Delivery

= Spam Detection

Thank You

	Slide Number 1
	Motivation
	Overview
	Transformation
	What NOT?
	Hive “One Shot” Commands
	.hiverc file
	Text File Encoding of Data Values
	Schema on Read
	Customizing Table Storage Formats
	Hive MetaStore
	MetaStore Configurations
	Hive Installation
	Type System
	Built In Functions
	Serialization/DeSerialization
	Hive File Format
	Simple Example
	1. Create a Table
	1. Create a Table
	2. Load Data Into a Table
	3. Query Data
	3. Query Data
	4. Drop The Table
	Loading Data
	External Table
	Partitions
	Creating Partitioned Tables
	Load Data Into Partitioned Table
	Partitioned Table
	Querying Partitioned Table
	Bucketing
	Create and Use Table with Buckets
	Random Sample of Bucketed Table
	Joins
	Simple Inner Join
	Simple Inner Join
	Outer Join
	Outer Join Examples
	Pros & Cons
	Application
	Thank You

