
Session 9

Motivation

 Limitation of MR
 Have to use M/R model
 Java knowledge required (streaming ??)
 Not Reusable
 Error prone
 For complex jobs:
 Multiple stage of Map/Reduce functions
 Just like ask dev to write specify physical execution plan

in the database

Overview
• A data warehouse infrastructure built on top of Hadoop for

providing data summarization, query, and analysis.
– ETL.
– Structure.
– Access to different storage.
– Query execution via MapReduce.

• Key Building Principles:
– SQL is a familiar language
– Extensibility – Types, Functions, Formats, Scripts
– Performance

• Early Hive development work started at Facebook in 2007
• Today Hive is an Apache project under Hadoop

Transformation

• Translates HiveQL statements into a set of
MapReduce Jobs which are then executed on a
Hadoop Cluster

What NOT?

• Hive does NOT provide low latency or realtime
queries

• Even querying small amounts of data may take
minutes

• Designed for scalability and ease-of-use rather
than low latency responses

Hive “One Shot” Commands
• CLI accepts a -e command in which CLI exits immediately as soon queries

are executed
$ hive -e "SELECT * FROM mytable LIMIT 3";

• Adding the -S for silent mode removes the OK and Time taken ... lines, as
well as other inessential output,

$ hive -S -e "select * FROM mytable LIMIT 3" > /tmp/myquery  can move the output to
file

• Hive can execute one or more queries that were saved to a file using the -f

file argument. By convention, saved Hive query files use the .q or .hql
extension.

$ hive -f /path/to/file/withqueries.hql

• If you are already inside the Hive shell you can use the SOURCE command
to execute a script file.

hive> source /path/to/file/withqueries.hql;

• -i file option, which lets you specify a file of commands for the CLI to
run as it starts, before showing you the prompt.

.hiverc file
• Hive automatically looks for a file named .hiverc in your

HOME directory and runs the commands it contains, if any.
– Can be used to set user-specific properties  IMP

• These files are convenient for commands that you run
frequently, such as setting system properties or adding Java
archives (JAR files) of custom Hive extensions to Hadoop’s
distributed cache.
– Use semicolon at the end of each line**

• Shell Execution:: You don’t need to leave the hive CLI to run

simple bash shell commands. Simply type ! followed by the
command and terminate the line with a semicolon (;)

Text File Encoding of Data Values
• Hive uses various control characters by default, which are less likely to

appear in value strings.

• Al format defaults:
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;

Schema on Read
• When you write data to a traditional database, the database has

total control over the storage. An important implication of this
control is that the database can enforce the schema as data is
written. This is called schema on write.

• Hive has no such control over the underlying storage. There are
many ways to create, modify, and even damage the data that Hive
will query. Therefore, Hive can only enforce queries on read. This is
called schema on read.

• So what if the schema doesn’t match the file contents? Hive does
the best that it can to read the data else it will replace the NULL
where doesn’t matches (i.e. during schema violation)

Customizing Table Storage Formats

IMP  Hive uses,
• an input format to split input streams into records,
• an output format to format records into output streams (i.e., the

output of queries),
• and a SerDe to parse records into columns, when reading, AND
• encodes columns into records, when writing.

Example– Using a custom SerDe, i/p and o/p format:

CREATE TABLE kst
PARTITIONED BY (ds string)
ROW FORMAT SERDE 'com.linkedin.haivvreo.AvroSerDe'
WITH SERDEPROPERTIES ('schema.url'='http://schema_provider/kst.avsc')
STORED AS
INPUTFORMAT 'com.linkedin.haivvreo.AvroContainerInputFormat'
OUTPUTFORMAT 'com.linkedin.haivvreo.AvroContainerOutputFormat';

Hive MetaStore

• To support features like schema(s) and data
partitioning Hive keeps its metadata in a Relational
Database
– Packaged with Derby, a lightweight embedded SQL DB

• Default Derby based is good for evaluation an testing
• Schema is not shared between users as each user has their

own instance of embedded Derby
• Stored in metastore_db directory which resides in the

directory that hive was started from

• Can easily switch another SQL installation such as
MySQL

MetaStore Configurations

Hive Installation
• Set $HADOOP_HOME environment variable

– Was done as a part of HDFS installation
• Set $HIVE_HOME and add hive to the PATH
• Hive will store its tables on HDFS and those locations

needs to be bootstrapped
export HIVE_HOME=$CDH_HOME/hive-0.8.1-cdh4.0.0
export PATH=$PATH:$HIVE_HOME/bin

$ hdfs dfs -mkdir /tmp
$ hdfs dfs -mkdir /user/hive/warehouse
$ hdfs dfs -chmod g+w /tmp
$ hdfs dfs -chmod g+w /user/hive/warehouse

• Similar to other Hadoop’s projects Hive’s
 configuration is in $HIVE_HOME/conf/hivesite.xml

Type System

• Primitive types
– Integers:TINYINT, SMALLINT, INT, BIGINT.

– Boolean: BOOLEAN.

– Floating point numbers: FLOAT, DOUBLE .

– String: STRING.

• Complex types
– Structs: {a INT; b INT}.

– Maps: M['group'].

– Arrays: ['a', 'b', 'c'], A[1] returns 'b'.

Built In Functions

• Mathematical: round, floor, ceil, rand, exp...
• Collection: size, map_keys, map_values,

array_contains.
• Type Conversion: cast.
• Date: from_unixtime, to_date, year, datediff...
• Conditional: if, case, coalesce.
• String: length, reverse, upper, trim...

Serialization/DeSerialization

 Ser/De
 Describe how to load the data from the file into a

representation that make it looks like a table;

 Lazy load (Default – LazySerDe)
 Create the field object when necessary
 Reduce the overhead to create unnecessary objects in Hive
 Java is expensive to create objects
 Increase performance

Hive File Format

• Hive lets users store different file formats
• Helps in performance improvements
• Default – TEXTFILE FORMAT
• SQL Example:

CREATE TABLE dest1(key INT, value STRING)
STORED AS
INPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileOutputFormat'

Simple Example

1. Create a Table
2. Load Data into a Table
3. Query Data
4. Drop the Table

1. Create a Table

1. Create a Table

2. Load Data Into a Table

3. Query Data

3. Query Data

4. Drop The Table

Loading Data

External Table

Partitions
• To increase performance Hive has the capability to

partition data
– The values of partitioned column divide a table into

segments
– Entire partitions can be ignored at query time
– Similar to relational databases’ indexes but not as

granular
• Partitions have to be properly created by users

– When inserting data must specify a partition
• At query time, whenever appropriate, Hive will

automatically filter out partitions

Creating Partitioned Tables

Load Data Into Partitioned Table

Partitioned Table

Querying Partitioned Table

Bucketing
• Mechanism to query and examine random samples of

data
– Break data into a set of buckets based on a hash function of a

"bucket column"
• Capability to execute queries on a sub-set of random data

• Doesn’t automatically enforce bucketing
– User is required to specify the number of buckets by setting # of

reducer

Create and Use Table with Buckets

Random Sample of Bucketed Table

Joins

• Joins in Hive are trivial
• Supports outer joins

– left, right and full joins

• Can join multiple tables
• Default Join is Inner Join

– Rows are joined where the keys match
– Rows that do not have matches are not included in the

result

Simple Inner Join

Simple Inner Join

Outer Join

Outer Join Examples

Pros & Cons
 Pros
 A easy way to process large scale data
 Support SQL-based queries
 Provide more user defined interfaces to extend
 Programmability
 Interoperability with other database tools

 Cons
 No easy way to append data
 Files in HDFS are immutable
 Accepts only a subset of SQL queries

Application

 Log processing
 Daily Report
 User Activity Measurement

 Data/Text mining
 Machine learning (Training Data)

 Business intelligence
 Advertising Delivery
 Spam Detection

Thank You

	Slide Number 1
	Motivation
	Overview
	Transformation
	What NOT?
	Hive “One Shot” Commands
	.hiverc file
	Text File Encoding of Data Values
	Schema on Read
	Customizing Table Storage Formats
	Hive MetaStore
	MetaStore Configurations
	Hive Installation
	Type System
	Built In Functions
	Serialization/DeSerialization
	Hive File Format
	Simple Example
	1. Create a Table
	1. Create a Table
	2. Load Data Into a Table
	3. Query Data
	3. Query Data
	4. Drop The Table
	Loading Data
	External Table
	Partitions
	Creating Partitioned Tables
	Load Data Into Partitioned Table
	Partitioned Table
	Querying Partitioned Table
	Bucketing
	Create and Use Table with Buckets
	Random Sample of Bucketed Table
	Joins
	Simple Inner Join
	Simple Inner Join
	Outer Join
	Outer Join Examples
	Pros & Cons
	Application
	Thank You

