
Advanced MapReduce 

Developing your MapReduce Job 



MapReduce 

• Job – execution of map and reduce  

– functions to accomplish a task 

• Equal to Java’s main 

 

• Task – single Mapper or Reducer 

– Performs work on a fragment of data 

 



WordCount Job 

1. Configure the Job 
– Specify Input, Output, Mapper, Reducer and Combiner 

 

2. Implement Mapper 
– Input is text – a line from sample.txt 

– Tokenize the text and emit first character with a count of  1 - <token, 
1> 

 

3. Implement Reducer 
– Sum up counts for each letter 

– Write out the result to HDFS 

 

4. Run the job 

 



1. Configure Job 

• Job class 

– Encapsulates information about a job 

– Controls execution of the job 

 Job job = new Job(); 

 

• A job is packaged within a jar file 

– Hadoop Framework distributes the jar on your behalf 

– Needs to know which jar file to distribute 

– The easiest way to specify the  jar that your job resides in is by calling 

job.setJarByClass 

job.setJarByClass(WordCount.class); 

– Hadoop will locate the jar file that contains the provided class 

 



1. Configure Job – Specify Input 

FileInputFormat.addInputPath(job, new 
Path(otherArgs[0])); 

job.setInputFormatClass(TextInputFormat.class); 

 

• Can be a file, directory or a file pattern 
– Directory is converted to a list of files as an input 

• Input is specified by implementation of InputFormat - in 
this case TextInputFormat 
– Responsible for creating splits and a record reader 

– Controls input types of key-value pairs, in this case LongWritable 
and Text 

• File is broken into lines, mapper will receive 1 line at a time  
 

 



1. Configure Job – Specify Output 

FileOutputFormat.setOutputPath(job, new 
Path(otherArgs[1])); 

job.setOutputFormatClass(TextOutputFormat.class); 

 

• OutputFormat defines specification for  outputting data from 
Map/Reduce job 

 

• WodCount job utilizes an implementation of OutputFormat - 
TextOutputFormat 
– Define output path where reducer should place its output 

• If path already exists then the job will fail 

– Each reducer task writes to its own file 
• By default a job is configured to run with a single reducer 

– Writes key-value pair as plain text 

 

 



1. Configure Job – Specify Output 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

 

• Specify the output key and value types for both 

mapper and reducer functions 

– Many times the same type 

– If types differ then use 

• setMapOutputKeyClass() 

• setMapOutputValueClass() 

 

 



1. Configure Job 

• Specify Mapper, Reducer and Combiner 

– At a minimum will need to implement these classes 

– Mappers and Reducer usually have same output key 

 
job.setMapperClass(TokenizerMapper.class); 

job.setReducerClass(IntSumReducer.class); 

job.setCombinerClass(IntSumReducer.class); 

 



1. Configure Job 

• job.waitForCompletion(true) 

– Submits and waits for completion 

– The boolean parameter flag specifies whether output 

should be written to console 

– If the job completes successfully ‘true’ is returned, 

otherwise ‘false’ is returned 

 
System.exit(job.waitForCompletion(true) ? 0 : 1); 

 



Our Count Job is configured to 

• Chop up text files into lines 

• Send records to mappers as key-value pairs 

– Line number and the actual value 

• Mapper class is TokenizeMapper 

– Receives key-value of <IntWritable,Text> 

– Outputs key-value of <Text, IntWritable> 

• Reducer class is IntSumReducer 

– Receives key-value of <Text, IntWritable> 

– Outputs key-values of <Text, IntWritable> as text 

• Combiner class is IntSumReducer 

 



1. Configure Count Job 
public class WordCount {  

public static void main(String[] args) throws Exception { 

 

try{ 

    if (args.length != 2) { 

        System.out.printf("Usage: wordcount <input dir> <output dir>\n"); 

        System.exit(-1); 

      } 

     

Job job = new Job(); 

job.setJarByClass(WordCount.class); 

 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

 

job.setMapperClass(TokenizeMapper.class); 

job.setReducerClass(TokenizeReducer.class); 

 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

 

FileInputFormat.addInputPath(job, new Path(args[0])); 

FileOutputFormat.setOutputPath(job, new Path(args[1])); 

 

System.exit(job.waitForCompletion(true) ? 0 : 1); 

}catch (Exception e){ 

e.printStackTrace(); 

} 

} 



2. Implement Mapper Class 

• Class has 4 Java Generics parameters 
– (1) input key (2) input value (3) output key (4) output value 

– Input and output utilizes hadoop’s IO framework 
• org.apache.hadoop.io 

 

• Your job is to implement map() method 
– Input key and value 

– Output key and value 

– Logic is up to you 

 

• map() method injects Context object, use to: 
– Write output 

– Create your own counters 

 



2. Implement Maper 

public class TokenizerMapper extends Mapper<Object, Text, Text, 

IntWritable> { 

 

@Override 

public void map(Object key, Text value, Context context) 

throws IOException, InterruptedException { 

 

StringTokenizer itr = new StringTokenizer(value.toString()); 

 

while (itr.hasMoreTokens()) { 

context.write(new Text(itr.nextToken()), new IntWritable(1)); 

} 

} 

} 



3. Implement Reducer 

• Analogous to Mapper – generic class with four types 

– (1) input key (2) input value (3) output key (4) output value 

– The output types of map functions must match the input types of  

reduce function 

• In this case Text and IntWritable 

– Map/Reduce framework groups key-value pairs produced by mapper 

by key 

• For each key there is a set of one or more values 

• Input into a reducer is sorted by key 

• Known as Shuffle and Sort 

– Reduce function accepts key->setOfValues and outputs key-value pairs 

• Also utilizes Context object (similar to Mapper) 

 



3. Implement Reducer 

public class IntSumReducer  

extends Reducer<Text, IntWritable, Text, IntWritable>{ 

 

@Override 

public void reduce (Text key, Iterable<IntWritable> values, Context 

context) 

throws IOException, InterruptedException { 

int sum = 0; 

for (IntWritable val : values) 

{ 

sum += val.get(); 

} 

 

context.write(key, new IntWritable(sum)); 

} 

} 



3. Reducer as a Combiner 

• Combine data per Mapper task to reduce amount of data 

transferred to reduce phase 

• Reducer can very often serve as a combiner 

– Only works if reducer’s output key-value pair types are the same as 

mapper’s output types 

• Combiners are not guaranteed to run 

– Optimization only 

– Not for critical logic 

 



4. Run Count Job 

• DEMO -- Specify how to run 

 

• Create a JAR class 

• Run the jar 

hadoop jar wordcount.jar <in> <out> 



Output From Your Job 

• Provides job id 

– Used to identify, monitor and manage the job 

• Shows number of generated splits 

• Reports the Progress 

• Displays Counters – statistics for the job 

– Sanity check that the numbers match what you expected 

 

 



Input and Output 



Hadoop IO Classes 

• Hadoop uses it’s own serialization  mechanism for writing data in 
and out of  network, database or files 
– Optimized for network serialization 

– A set of basic types is provided 

– Easy to implement your own 

 

• Extends Writable Interface 
– Framework’s serialization mechanism 

– Defines how to read and write fields 

 

• org.apache.hadoop.io package 
– LongWritable for Long 

– IntWritable for Integer 

– Text for String 

– Etc... 

 



Key and Value Types 

• Keys must implement WritableComparable interface 

– Extends Writable and java.lang.Comparable<T> 

– Required because keys are sorted prior reduce phase 

 

• Hadoop is shipped with many default implementations of 

WritableComparable<T> 

– Wrappers for primitives (String, Integer, etc...) 

– Or you can implement your own 



WritableComparable<T> 

Implementations 



Hadoop’s Input Format 

• Hadoop eco-system is packaged with many InputFormats 

– TextInputFormat 

– NLineInputFormat 

– DBInputFormat 

– TableInputFormat (HBASE) 

– StreamInputFormat 

– SequenceFileInputFormat 

– Etc... 

 

• Configure on a Job object 

– job.setInputFormatClass(XXXInputFormat.class); 



TextInput Format 

• Plaint Text Input 

• Default format 

 



TableInput Format 

• Converts data in HTable to format consumable to MapReduce 

• Mapper must accept proper key/values 



HashPartitioner 

• Calculate Index of Partition: 

– Convert key’s hash into non-negative number 

• Logical AND with maximum integer value 

– Modulo by number of reduce tasks 

• In case of more than 1 reducer 

– Records distributed evenly across available reduce tasks 

• Assuming a good hashCode() function 

– Records with same key will make it into the same reduce 

task 

– Code is independent from the # of partitions/reducers 

specified 



OutputFormat 

• Specification for writing data 

– The other side of InputFormat 

• Implementation of OutputFormat<K,V> 

• TextOutputFormat is the default implementation 

– Output records as lines of text 

– Key and values are tab separated “Key /t value” 

• Can be configured via 

“mapreduce.output.textoutputformat.separator” property 

– Key and Value may of any type - call .toString() 

 



Hadoop’s Output Format 

• Hadoop eco-system is packaged with many OutputFormats 

– TextOutputFormat 

– DBOutputFormat 

– TableOutputFormat (HBASE) 

– MapFileOutputFormat 

– SequenceFileOutputFormat 

– NullOutputFormat 

– Etc... 

• Configure on Job object 

– job.setOutputFormatClass(XXXOutputFormat.class); 

– job.setOutputKeyClass(XXXKey.class); 

– job.setOutputValueClass(XXXValue.class); 



 

MRv2 / YARN  

 
The future of next-gen computing  



YARN 
Yet Another Resource Negotiator  

• YARN: a generic resource-management and distributed 
application framework  
– In Aug 2012, YARN was promoted to be a sub-project of Hadoop in 

Apache. Before this, YARN was part of the Hadoop MapReduce 
project.  

– MR is not sufficient for all use cases, like PageRank or many ML 
algorithms  

– MR become just one of the applications that can be run in YARN  

– Future YARN algorithms: MPI/Iterative processing, graph-processing, 
simple services, real time (stream processing, CEPFresil)  

– Since all the data in the enterprise is already available in Hadoop HDFS 
having multiple paths for processing is critical  

– All client-facing MapReduce interfaces are unchanged, which means 
that there is no need to make any source code changes to run on top 
of Hadoop 0.23  



MRv1 Quick Recap 

 

JT responsibilities:  

• Resource management (TTs),  

• Tracking resource consumption/availability,  

• Job life-cycle management  



MRv2 Overview 

 

Fundamental idea:  

Re-architect JT’s Resource Management and Job scheduling & monitoring into two 
separate components: Resource Manager & AppMaster 



Building Blocks 
• ResourceManager: manages the global assignment of compute resources to 

applications, has a pluggable scheduler for allocating resources to the running 

applications subject constraints of capacities, queues. It optimizes for cluster utilization 

(keep all resources in use all the time) against various constraints such as capacity 

guarantees, fairness, and SLAs, does NOT do fault tolerance for resources (AM does)  

 

• ApplicationMaster: manages the application’s scheduling and coordination, 

negotiates appropriate resource containers from the Scheduler and tracking their 

progress  

 

• NodeManager: per machine slave, responsible for launching applications’ containers, 

monitoring their resources (cpu, memory, disk) and reporting to the ResourceManager  

 

• The AM can request very specific requirements from the RM for the containers, like:  

– Resource name, hostname, rack name,  

– Memory (in MB)  

– CPU (in cores), added after March 2012  

– Future: disk, network, GPUs, etc  

 



Building Blocks 

• A resource request from the AM to the scheduler in the RM 

has the following:  

– Resource name: hostname, rackname, (Future: VMs on a host, 

networks)  

– Priority: priority within the application, not across cluster  

– Resource requirement: memory, CPU (F: GPUs)  

– # of Containers: just a #  

 

• A container is basically a resource allocation that grants rights 

to an application to use a specific amount of resources 

(memory, CPU) on a specific host  



Application Execution Sequence 



 

1) A client program submits the application, including the necessary specifications to launch the 
application-specific ApplicationMaster itself.  

 

2) The ResourceManager assumes the responsibility to negotiate a specified container in which to start 
the ApplicationMaster and then launches the ApplicationMaster.  

 

3) The ApplicationMaster, on boot-up, registers with the ResourceManager – the registration allows the 
client program to query the ResourceManager for details, which allow it to directly communicate with its 
own ApplicationMaster.  

 

4) During normal operation the ApplicationMaster negotiates appropriate resource containers via the 
resource-request protocol.  

 

5) On successful container allocations, the ApplicationMaster launches the container by providing the 
container launch specification to the NodeManager. The launch specification, typically, includes the 
necessary information to allow the container to communicate with the ApplicationMaster itself.  

 

6) The application code executing within the container then provides necessary information (progress, 
status etc.) to its ApplicationMaster via an application-specific protocol.  

 

7) During the application execution, the client that submitted the program communicates directly with 
the ApplicationMaster to get status, progress updates etc. via an application-specific protocol.  

 

8) Once the application is complete, and all necessary work has been finished, the ApplicationMaster 
deregisters with the ResourceManager and shuts down, allowing its own container to be repurposed.  

Application Execution Sequence 



Thank You 


